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1. Introduction 

In Indonesia, according to a study by the Directorate of Community Nutrition Development of the Health Ministry, 

changes in the weight of children under five years old over time can be an early indication of changes in their nutritional 

status (Lareno et al., 2020). If a child's weight does not increase within six months, they are 12.6 times more likely to 

experience malnutrition than children whose weight continues to increase. The prevalence of stunting in Indonesia has 

been a significant issue, particularly in certain regions. For instance, South Kalimantan Province, with Banjarmasin as its 

capital, had a stunting prevalence of 34.2% in 2017, which was an increase of 1.1% from the previous year (Dinkes 

Kalsel, 2023). This placed the province among the ten highest stunting rates. However, in recent years, there has been a 

notable improvement. The national prevalence of stunting in Indonesia decreased from 29.6% in 2017 to 21.6% in 2022, 

and further to approximately 14.6% in 2024. In Banjarmasin, the prevalence of stunting fell to 17% in 2023 (Dinkes 

Banjarmasin, 2024). 

Abstract: Malnutrition remains a critical public health concern, particularly in low-resource settings where early 

detection is essential yet often constrained by limited infrastructure. While machine learning (ML) has emerged as a 

promising tool for nutritional risk prediction, many existing models fail to address class imbalance, resulting in biased 

outcomes and poor minority class detection. This study introduces an optimized ML framework that integrates 

imbalance-handling techniques—specifically SMOTE and Bagging—into the classification of stunting, wasting, and 

underweight among children in Banjarmasin, Indonesia. A curated dataset from 26 community health centers was used 

to train and evaluate five algorithms (Neural Network, Random Forest, Decision Tree, Logistic Regression, and 

XGBoost) across three treatment phases. Performance was assessed using 10-fold cross-validation and multi-method 

statistical validation, including ANOVA, Kruskal-Wallis, Dunn’s, and Friedman tests. XGBoost consistently 

outperformed other models, achieving the highest accuracy (90.7%) and F1 scores across all indicators. The integration 

of oversampling and ensemble methods yielded substantial improvements in minority class detection, with F1 score 

gains ranging from 1.15% to 419.42%. Spatial validation revealed regional disparities, underscoring the need for 

adaptive modeling strategies. These findings contribute to the development of scalable, equitable, and context-aware 

nutritional surveillance systems, offering actionable insights for targeted interventions and public health policy. 
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The Indonesian government has established the Posyandu (Pos Pelayanan Terpadu, or neighborhood integrated 

service post) under Puskesmas (Pusat Kesehatan Masyarakat, or community health facility). Posyandu provides services 

to monitor maternal, neonatal, and child health (MNCH) (Setjen Kementerian Kesehatan RI, 2021). Banjarmasin has 26 

Puskesmas, each overseeing 8-12 Posyandu (Dinkes Banjarmasin, 2024). Efforts to reduce stunting require expanding 

access to health services and facilities, but the government's budget is limited. Thus, the budget needs to be optimized by 

prioritizing areas required more urgently. One approach is to utilize health data from Posyandu with machine learning 

(ML) to predict nutritional status and generate a comprehensive map of public health conditions in Banjarmasin. This 

data-driven approach can help target interventions more effectively and make the most of limited resources 

(Fazraningtyas et al., 2024; Sinambela et al., 2024; Swastina et al., 2024). 

Many studies on ML algorithms have been conducted to assess children's nutrition. Table 1 highlights four 

commonly used algorithms in nutritional research: Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), 

and Neural Network (NN). Among these, RF performed best in 8 out of 15 comparison papers. However, in another 

study, LR outperformed other algorithms, including RF (Ferdowsy et al., 2021). Similarly, DT was found to outperform 

NB in (Yuliansyah et al., 2020). It is essential to note that these four algorithms are not the only ones with high accuracy. 

XGB demonstrated superior performance compared to RF(Bitew, et al., 2022; Pang, et al., 2021) In two papers that 

included XGB alongside the other four algorithms, XGB outperformed them. 

Table 1: Summary of comparative study research 

Authors Algorithm Result 

(Alqahtani et al., 2021) RF, Multilayer Perception (MLP) The RF method outperforms MLP in predicting obesity at an early stage 

with a high accuracy of 96.70%.  

(Bansod et al., 2020) ID3, Naïve Bayes (NB) The accuracy for the ID3 is 85%, and Naïve Bayes is 57%.  

(Bitew et al., 2022) LR, NN, RF, k-NN, Extreme Gradient 

Boosting (XGB) 

The XGB offers better predictive accuracy in stunting, wasting, and 

underweight, with 67.7%, 88.0%, and 75.7%, respectively. 

(Fenta et al., 2021) LR, NN, RF, Least Absolute Shrinkage and 

Selection Operator (L-1 regularization LR), 
L-2 regularization (Ridge), Elastic net 

The RF algorithm was selected as the best ML model. In order of 

importance; urban-rural settlement, literacy rate of parents, and place of 
residence were the major determinants of disparities in nutritional status 

for under-five children in Ethiopian administrative zones. 

(Ferdowsy et al., 2021) k-NN, LR, SVM, NB, CART, RF, MLP, 
AdaBoost, Gradient Boosting (GB)  

The LR achieves the highest accuracy of 97.09% for the classification of 
obesity risk. 

(Hammond et al., 2019) LASSO, RF, and GB Regression The best-performing LASSO models predicted obesity with an AUC of 

81.7% for girls and 76.1% for boys. 

(Hemo & Rayhan, 2021) RF, DT The RF has a better performance with an accuracy of 70.1% and 72.4% 
for predicting stunting and underweight, respectively.  

(Khan et al., 2022) 
 

LR-STEP, LR-LASSO, DT, RF, GB, SVM, 

NN, Linear Discriminant Analysis (LDA), 
Regularized Discriminant Analysis (RDA) 

The GB has performed the best in terms of the smallest misclassification 

error (ME) for predicting stunted growth. 

(Momand et al., 2020) RF, NB, LR, PART Rule PART and RF were suitable algorithms for predicting the malnutrition 

status of preschool-age children in Afghanistan. 

(Pang et al., 2021) 
   

DT, LR, NN, XGB, SVM with RBF kernel, 
Gaussian NB (GNB), Bernoulli NB (BNB) 

The XGB yielded 0.81% AUC and achieved statistically significantly 
better performance on standard classifier metrics for the prediction of 

early childhood obesity. 

(Rahman et al., 2021) LR, RF, SVM The LR identified five risk factors for stunting and underweight, and four 

for wasting. The RF achieved high accuracy in classifying stunted 
(88.3%), wasted (87.7%), and underweight (85.7%) children. 

(Ridwan & Sari, 2021) C4.5, NB The C4.5 is 0.93% better in accuracy than NB for the classification of 

toddler nutrition status based on the anthropometric index. 

(M. M. Shahriar et al., 
2019) 

NN, DT, SVM, RF, NB The NN shows the best result with accuracy close to 86.0%, 70.0%, and 
67.30% respectively, with wasting, underweight, and stunting. 

(Talukder & Ahammed, 

2020) 

NN, LDA, SVM, LR, RF The RF accurately predicted malnutrition in Bangladeshi children with 

68.51% accuracy, 94.66% sensitivity, and 69.76% specificity. 

(Yuliansyah et al., 2020) SVM, K-NN, RF, DT, NB DT is superior for weight data for age and height for an age, while K-NN 
is superior for weight data for height. 

 

Additionally, most of these earlier frameworks did not address the issue of class imbalance caused by rare 

occurrences of malnutrition (stunting, wasting, and underweight) in the community. This research investigates the impact 

of addressing class imbalance on the performance of predictive models used to assess children's nutritional status. 

Therefore, it is crucial to investigate NN, RF, DT, LR, and XGB with more thorough tests, specifically addressing the 

issue of class imbalance. The aim of this study is to enhance ML nutritional predictive models by evaluating model 

performance, comparing algorithms, and addressing class imbalance to achieve accurate nutritional status predictions of 

Banjarmasin’s children.  
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2. Methodology 

This research employs the experimental research method. The method includes four critical phases, which consist of (1) 

Data Gathering and Data Pre-processing, (2) Proposed Approach, (3) Test Model and Experiment, and (4) Result and 

Evaluation Metrics. Each phase is crucial to achieving the research objectives. 

 

2.1 Data Gathering and Data Pre-processing 

The population in this study consisted of mothers and their children in the city of Banjarmasin, South Kalimantan 

Province, Indonesia. Data was collected from 26 Puskesmas in Banjarmasin. The acquired data was used to obtain 

relevant attributes that fit the input algorithm format. Relevant features for children’s nutritional status, linked to the 

BDHS 2014 (National Institute of Population Research and Training (NIPORT), 2016) are shown in Table 2.  

Table 2: Selected features for children's nutritional status from different studies 

Features (Talukder & 

Ahammed, 2020) 

(Hemo & 

Rayhan, 2021) 

(Rahman et al., 

2021) 
Proposed 

Child     

● Age ✓ ✓ ✓ ✓ 

● Sex  ✓ ✓ ✓ 

● Size at birth  ✓   

● Birth Order  ✓ ✓ ✓ 

● Twin   ✓  

Maternal     

● Age  ✓ ✓  

● Education ✓ ✓ ✓ ✓ 

● Current working status   ✓ ✓ 

● Media exposure  ✓   

● BMI ✓ ✓  ✓ 

● Age at first birth    ✓ 

● Preceding birth interval ✓   ✓ 

● Currently breastfeeding  ✓   

Paternal     

● Education   ✓ ✓ 

Household     

● Toilet facility   ✓  

● Drinking water   ✓  

● Wealth index ✓ ✓ ✓ ✓ 

Community     

● Place of residence ✓ ✓ ✓ ✓ 

● Division ✓ ✓ ✓ ✓ 

 

2.2 Proposed Approach 
The proposed framework is evaluated against previous prediction frameworks (Ferdowsy et al., 2021), (Rahman et al., 

2021), and (M. Shahriar et al., 2019) with Figure 1(a) illustrating both the initial and optimized versions - without and 

with class imbalance handling, respectively. Nutritional status predictions use NN, RF, DT, XGB, and LR, all trained on 

identical datasets and validated through 10-fold cross-validation, dividing the training set into equal portions and 

repeating the learning process 10 times to mitigate overfitting (Witten et al., 2016). After optimization, all models are 

tested with specific data treatments for the best performance. 

Treatment I: Reducing Class Labels - Class labels were simplified into two categories for comparability, 

transforming the WHZ score to binomial for use with LR. 

Treatment II: Data Restructuring - Features like maternal employment and education were generalized to prevent 

overfitting, ensuring model clarity and robustness. 

Treatment III: Addressing Class Imbalance - Class imbalance, previously unaddressed, is now managed with 

techniques like sampling and weighting, as shown in the optimized framework Figure 1(b). 

In datasets with binomial or binary label classes, one class may be much more common than another, posing a challenge 

for predictive modeling because most machine learning algorithms assume an equal number of examples for each class. 

As a result, models trained with imbalanced data tend to perform poorly, especially for minority classes. There are two 

main methods to overcome class imbalance: sampling and weighting. However, not all ML algorithms accept weights or 

sampling. Sampling itself is divided into under-sampling and over-sampling. The proposed framework will combine the 

following techniques to address class imbalances: 

• Sample Technique (Under-sampling): This strategy removes examples from the majority class in a training dataset 

to balance the class distribution. When used in conjunction with an oversampling strategy for the minority class, this 

combination often outperforms under-sampling alone (Fernández et al., 2018). 
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• SMOTE (Synthetic Minority Oversampling Technique): This method generates synthetic samples for the minority 

class by interpolating among existing minority class instances(Fernández et al., 2018). SMOTE has been applied in 

several previous studies in the context of predicting or identifying nutritional status (Fernández et al., 2018). The 

reliability of handling class imbalances using SMOTE will be tested and compared with other techniques. 

• Bagging (Bootstrap Aggregating): Introduced to enhance classification by combining classifications of randomly 

produced training sets  (Breiman, 2001). The Bagging classifier divides a training set into numerous new sets through 

random sampling and creates models using these new training sets. This technique lowers variance and helps prevent 

overfitting, improving the performance of unstable techniques such as NN, classification, and regression trees. It 

also effectively handles class imbalance. 

 

  

                                         (a)                                            (b) 

Fig. 1: The proposed framework. (a) Initial framework  (b) Optimized framework 

 

2.3 Test Model and Experiment 

This stage involves implementing the proposed approach and testing it through experimentation. The model's 

performance is compared to related frameworks to predict children's nutritional status. Key metrics, such as accuracy, 

are used to evaluate the effectiveness of the proposed framework. 

 

2.4 Results and Evaluation Metrics 

The experiments use AUC to assess classifier performance, supporting cross-study comparability (Rahmatullah & Noble, 

2014). Precision, Recall, and F1 score offer further insights into model effectiveness. Sensitivity and Specificity are also 

evaluated to ensure accurate detection of nutritional issues (Talukder & Ahammed, 2020). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

(1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

(2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

(3) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓

2 𝑥 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

(4) 

 

To assess the statistical significance of model performance across multiple spatial regions, a combination of 

parametric and non-parametric tests was employed. One-way ANOVA was applied to determine whether mean 

differences existed among groups, followed by paired t-tests for specific pairwise comparisons when assumptions of 

normality and homogeneity of variance were met. In cases where these assumptions were violated, the Kruskal–Wallis 
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test was utilized as a robust non-parametric alternative to detect differences in median ranks. Subsequent pairwise 

comparisons were conducted using Dunn’s test, which controls for familywise error rates and is appropriate following a 

significant Kruskal–Wallis result. To evaluate consistency in model rankings across repeated measures or folds, the 

Friedman test was implemented, offering a non-parametric approach analogous to repeated-measures ANOVA. This 

multi-method strategy ensured that both central tendency and ordinal relationships were rigorously examined under 

varying distributional conditions (Dinno, 2015; Rozaini & Khalid, 2024). 

 

3. Results and Discussion 

This section overviews the study's data and compares the performance of models in predicting nutritional status. Key 

metrics, including accuracy, AUC, and F1 score, are highlighted to assess each model's effectiveness. The results provide 

insight into the framework's strengths and areas for improvement. 

 

3.1 Data 

Data were collected from 26 Puskesmas in Banjarmasin, primarily from 2021, due to limited maternal data availability 

from 2018 to 2021. Initially, 75,252 rows of child data and 12,546 rows of maternal e-cohort data were collected from 

the following Puskesmas: Terminal, Cempaka Putih, 9 Nopember, Sungai Mesa, Sungai Bilu, Pekauman, Kelayan Timur, 

Kelayan Dalam, Gadang Hanyar, Karang Mekar, Pekapuran Raya, Cempaka, Teluk Dalam, Basirih Baru, Banjarmasin 

Indah, Pelambuan, Sungai Jingah, S. Parman, Alalak Selatan, Alalak Tengah, Kuin Raya, Teluk Tiram, Pemurus Baru, 

Pemurus Dalam, and Beruntung Jaya. After preprocessing, the dataset was refined to 5,664 rows, encompassing data 

from all Puskesmas. 

 

3.2 Model Performance 

Optimal settings for each algorithm were determined through testing, revealing the following configurations: NN) Hidden 

layers with sizes 100-50-50, learning rate of 0.1, using 10-fold cross-validation with shuffled sampling; RF: 100 trees, 

depth of 30, gain ratio criterion, using 10-fold cross-validation with shuffled sampling; DT: Depth of 30, gain ratio 

criterion, using 10-fold cross-validation with stratified sampling; XGB: Tree Booster, Approximate Method, depth 8, 

sub-sample ratio 80:20, using 10-fold cross-validation with stratified sampling; LR: L-BFGS solver (without 

regularization), using 10-fold cross-validation with shuffled sampling. Table 3 and Figure 2 summarize the best results 

from each treatment, showing relative changes (Δ) compared to previous experiments as percentages. For example, NN 

accuracy improved by 0.22% with data restructuring (Treatment II) compared to binomial labeling (Treatment I) and 

increased by 1.23% with class imbalance handling (Treatment III) compared to data restructuring. 

 

Table 3: Summary of results using different models, treatments, and handlers 

Model Treatment Handler  Acc. % AUC % F1 Score % 

NN 

  

I None 0.892 - 0.907 - 0.695 - 

II None 0.894 0.22% 0.900 -0.77% 0.696 0.14% 
III Bagging (7:3) + SMOTE 10 neighbors 0.907 1.23% 0.896 -0.44% 0.707 1.15% 

RF 

  

I None 0.823 
 

0.876 
 

0.099 
 

II None 0.824 0.12% 0.859 -1.94% 0.103 4.04% 

III SMOTE 5 neighbors 0.805 -2.31% 0.848 -1.28% 0.535 419.42% 

DT 

  

I None 0.818 - 0.686 - 0.105 - 

II None 0.815 -0.37% 0.655 -4.52% 0.128 21.90% 

III Bagging (7:3) + Sample 300 0.854 4.79% 0.823 25.65% 0.314 145.31% 

LR  I None 0.849 - 0.774 - 0.576 - 
II None 0.857 0.94% 0.773 -0.13% 0.587 1.91% 

III Bagging (7:3)  0.910 6.18% 0.884 14.36% 0.662 12.78% 

XGB I None 0.901 - 0.895 - 0.688 - 
II None 0.906 0.55% 0.905 1.12% 0.708 0.55% 

III SMOTE 10 neighbors 0.907 0.11% 0.907 0.22% 0.732 3.39% 

 

A slight increase in accuracy was observed in the Neural Network model following the application of ensemble 

methods (up to 90.4%) with Bagging. However, its F1 score remains relatively unchanged, emphasizing the need for 

precision-recall balance. A substantial improvement in F1 score was recorded for the Random Forest model (419.24%), 

particularly under Treatment III, where SMOTE was applied. DT gains an F1 score enhancement (21.50%) with Bagging 

(Treatment II), but accuracy decreases by 3.07%, likely due to inherent variance. LR stands out with high accuracy 

(91.0%) and a significant F1 score increase (12.78%) using Treatment III and Bagging, ensuring balanced performance. 

XGB optimizes under Treatment III, achieving the highest accuracy (90.7%) and F1 Score (0.732). Class imbalance 

handling improves F1 scores by approximately 1.15% to 12.78% (NN, LR, XGB). RF and DT achieve F1 scores 

exceeding 100%. However, accuracy and AUC values vary between -2.31% and 25.65%. 
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Fig. 2: Performance comparison of five machine learning models (NN, RF, DT, LR, XGB) across three 

treatments, evaluated using Accuracy, AUC, and F1 Score 

 

It should be noted that accuracy and AUC metrics tend to be biased toward the majority class, thereby limiting their 

reliability in evaluating model performance under class imbalance conditions. The F1 score, which balances precision 

and recall, is crucial in mitigating this bias. While combining minor classes may offer a partial solution, handling class 

imbalance remains a complex challenge requiring algorithm-specific strategies. Algorithms must be carefully selected, 

tested, and compared across different datasets to achieve optimal performance.  

In the search for feature impact on model performance, particularly concerning the F1 score (Saarela & Jauhiainen, 

2021)—as illustrated in Figure 3, the features Posyandu affiliation, Maternal age, Puskesmas affiliation, Maternal blood 

type, and Wealth status consistently rank among the top five across all models examined. 

 

   
Fig. 3: Ranked feature importance based on F1 Score contribution, highlighting Posyandu affiliation,  

maternal age, and household wealth as top predictors. 

 

The results of phased geographic validation indicate that the proposed model performs consistently across most 

regions, particularly in the North, West, and Central Banjarmasin areas. However, performance variations in South and 

East Banjarmasin underscore the need for adaptive thresholds and longitudinal model refinement. These findings 

reinforce the model’s relevance as an early prediction tool. 

 

3.3 Model Evaluation and Validation 

Across all validation folds, the highest accuracy was consistently obtained by XGBoost (M = 0.909, SD = 0.005), 

followed closely by the Neural Network (M = 0.894, SD = 0.003). Moderate performance was recorded for Logistic 

Regression (M = 0.864, SD = 0.007), while the lowest accuracy scores were observed for Decision Tree and Random 

Forest (M = 0.820 and 0.826, respectively). A statistically significant difference in accuracy among the models was 

identified through a one-way ANOVA, F(4, 45) = 112.37, p < .001. Post hoc comparisons using Bonferroni-adjusted 

pairwise t-tests confirmed that XGBoost and Neural Network significantly outperformed Random Forest and Decision 

Tree (p < .001), with Logistic Regression occupying an intermediate position. 

 Regarding the F1 score, which reflects the balance between precision and recall, the highest mean was again achieved 

by XGBoost (M = 0.712, SD = 0.013), followed by the Neural Network (M = 0.705, SD = 0.007). Logistic Regression 

yielded a mean F1 score of 0.611 (SD = 0.017), whereas Decision Tree and Random Forest exhibited substantially lower 

scores, with Random Forest recording the lowest mean of 0.123 (SD = 0.024). A significant difference in F1 score across 
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models was revealed by ANOVA, F(4, 45) = 89.56, p < .001. These findings were further validated using the Kruskal–

Wallis test (χ² = 38.21, p < .001), and Dunn’s post hoc analysis confirmed that Random Forest’s performance was 

significantly inferior to that of the other models. 

 To assess consistency across folds, the Friedman test was applied to both accuracy and F1 score metrics. Significant 

differences in model rankings were detected (accuracy: χ²(4) = 38.6, p < .001; F1 score: χ²(4) = 36.9, p < .001), reinforcing 

the robustness of the observed performance gaps. 

 In summary, XGBoost and Neural Network were identified as the most effective classifiers in this study. Their 

superior accuracy and F1 scores, combined with consistent performance across folds, suggest strong reliability and 

predictive capability compared to the other models evaluated. 

 

3.4 Applying Framework 

Tables 4 and 5 illustrate the varying effectiveness of handling methods for nutritional status indicators, such as Weight 

by Age Z score (WAZ) and Height by Age Z score (HAZ). For instance, while RF and XGB show relative consistency 

across WAZ and HAZ labels, their performance may not match that of WHZ. It is crucial to evaluate various handling 

methods systematically across all indicators for robust results. 

Table 4: ML model performance against WAZ label 

Model Handler Accuracy AUC F1 score 
NN Bagging (7:3) 0.8786 0.7854 0.1824 

 Bagging (7:3) + sample 300 0.7901 0.7799 0.3758  

 SMOTE 5 neighbors 0.8887 0.7293 0.2308 

 Bagging (7:3) + SMOTE 10 neighbors* 0.8607 0.7625 0.2749 

RF Bagging (7:3) 0.8883 0.7228 NaN 
 Bagging (7:3) + sample 300 0.8042 0.6995 0.2752 

 SMOTE 5 neighbors* 0.8414 0.7295 0.2780 

 Bagging (7:3) + SMOTE 5 neighbors 0.8791 0.6544 0.0234 

DT Bagging (7:3) 0.8873 0.6397 NaN 
 Bagging (7:3) + sample 300* 0.8757 0.6030 0.0228 

 SMOTE 5 neighbors 0.2599 0.5159 0.1497 

 Bagging (7:3) + SMOTE 5 neighbors 0.8728 0.6003 0.0505 

LR Bagging (7:3)* 0.8704 0.6845 0.2538 

 Bagging (7:3) + sample 300 0.7369 0.7329 0.3242 

 SMOTE 5 neighbors 0.7788 0.6619 0.2490 
 Bagging (7:3) + SMOTE 5 neighbors 0.7679 0.6835 0.2456 

XGB None 0.8772 0.7660 0.2112 

 SMOTE 5 neighbors* 0.8520 0.7500 0.2644 

*Best for WHZ   Best for WAZ  

Table 5: ML model performance against HAZ label 

Model Handler Accuracy AUC F1 score 
NN Bagging (7:3) 0.8867 0.7198 0.2403 

 Bagging (7:3) + sample 300 0.7483 0.7196 0.3348 
 SMOTE 5 neighbors 0.8469 0.6918 0.2491 

 Bagging (7:3) + SMOTE 10 neighbors* 0.8727 0.7060 0.2757 

RF Bagging (7:3) 0.8872 0.7239 NaN 

 Bagging (7:3) + sample 300 0.8112 0.6985 0.3004 
 SMOTE 5 neighbors* 0.8067 0.7113 0.3153 

 Bagging (7:3) + SMOTE 5 neighbors 0.8751 0.6386 0.0719 

DT Bagging (7:3) 0.8858 0.6962 NaN 
 Bagging (7:3) + sample 300* 0.8732 0.5801 0.0576 

 SMOTE 5 neighbors 0.1738 0.5246 0.1967 

 Bagging (7:3) + SMOTE 5 neighbors 0.8756 0.5927 0.0919 

LR Bagging (7:3)* 0.8562 0.6225 0.1134 

 Bagging (7:3) + sample 300 0.6966 0.6605 0.2711 

 SMOTE 5 neighbors 0.7344 0.5467 0.1781 

 Bagging (7:3) + SMOTE 5 neighbors 0.7764 0.5788 0.1890 

XGB None 0.8761 0.7130 0.1742 

 SMOTE 5 neighbors* 0.8548 0.7110 0.2788 

*Best for WHZ   Best for HAZ  

Tables 4 and 5 compare the model's performance with that of related studies (See Table 6). While LR achieved 

91.0% accuracy, it fell short of (Ferdowsy et al., 2021) 97.09%, for obesity prediction. RF showed strong accuracy 

(80.7%, 80.5%, and 84.1%), surpassing Hemo and Rahman (2021), and Talukder and Ahammed (2020), but not reaching 

Shahriar et al. (2019)’s higher benchmarks of 88.3%, 87.7%, and 85.7%. 

The NN algorithm demonstrated strong performance with accuracy rates of 90.7% for wasting, 79.0% for being 

underweight, and 74.8% for stunting, surpassing results in Shahriar et al. (2019) but not reaching the levels reported by 



Liliana et al., Journal of Technology and Humanities Vol. 6 No. 1 (2025) p. 22-32 

29 

Ferdowsy et al. (2021) and Rahman et al. (2021). Direct comparisons may be unfair without considering the F1 score, 

which measures precision-recall balance. XGB showed excellent performance with accuracy rates of 85.48%, 90.7%, 

and 85.20% for stunting, wasting, and underweight, surpassing benchmarks from Bitew et al. (2022). 

In summary, while LR has not exceeded the benchmarks set by Ferdowsy et al. (2021)RF, NN, and XGB have 

shown significant advancements in child nutritional status detection. It is acknowledged that these frameworks have yet 

to exceed the high accuracy rates achieved by Rahman et al. (2021), yet the omission of the F1 score in their study calls 

for a cautious interpretation of these results. The necessity of a comprehensive metric evaluation is emphasized to ensure 

the development of accurate machine learning models that are also balanced and effective in practical healthcare 

applications (Zhang et al., 2023) 

Table 6: Results comparison 

(Author, Year) Algorithm Best Stunted Wasted Underweight 

The proposed study 

RF  80.7% 80.5% 84.1% 

NN  74.8% 90.7% 79.6% 

DT  17.4% 85.4% 25.9% 

LR  69.7% 91.0% 73.7% 

XGB  85.5% 90.7% 85.2% 

(Bitew et al., 2022) LR, NN, RF, k-NN, XGB XGB 67.7% 88.0% 75.7% 

Ferdowsy et al., 2021  k-NN, LR, SVM, NB, 

CART, RF, MLP, 
AdaBoost, PGB 

LR Reported only the highest accuracy of 97.09% for 

obesity risk. 

Hemo & Rayhan, 2021  RF, DT RF 70.1% - 72.4% 

Rahman et al., 2021  
 

  

LR, RF, SVM,  LR 88.3% 87.7% 85.7% 

Reported only accuracy, without the critical F1 
score, precision, recall, or specificity 

Shahriar et al., 2019  NN, DT, SVM, RF, NB NN 67.3% 86.0% 70.0% 

Talukder & Ahammed, 2020  NN, LDA, SVM, LR, RF RF 68.51% - - 

 

3.5 Implementation 

It is necessary to identify risk factors for individuals affected by malnutrition and to understand their spatial distribution 

to pinpoint clusters of vulnerability within regions. Additionally, it is crucial to examine the relationship between risk 

factors associated with family characteristics and the spatial distribution of residences where family members suffer from 

malnutrition. This information serves as valuable input for government and public health policymakers. Consequently, 

utilizing the clustering results, an estimated public health condition map (dashboard) of Puskesmas can be generated 

based on their rank, which includes Good Health (Green), Moderate Health (Yellow), and Moderate Health with Concern 

(Red), as illustrated in Figure 4.  

 

 
Fig. 4: Cluster-based health map of Banjarmasin’s Puskesmas, categorized into three public health levels:  

Green (Good), Yellow (Moderate), and Red (Concern). 

 

3.6 Limitation 

While the proposed framework demonstrates promising results in predicting nutritional status, several limitations must 

be acknowledged. First, the dataset was derived exclusively from Puskesmas in Banjarmasin, which may limit the 

generalizability of the findings to other regions with different demographic or socioeconomic profiles. Spatial validation 
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was conducted to assess whether a predictive model trained on the Banjarmasin region could be generalized across its 

five sub-regencies. Statistical tests revealed significant performance disparities. ANOVA indicated differences in 

accuracy (p = .02) and F1 score (p < .01), with Banjarmasin Utara and Tengah outperforming the parent region. Kruskal-

Wallis and Dunn’s post-hoc tests confirmed these findings, particularly highlighting Utara’s superior accuracy and recall. 

Friedman’s test further demonstrated inconsistent model rankings across regions (χ² = 18.2, p < .01), suggesting that local 

data structures influenced algorithmic effectiveness. These results imply that the Banjarmasin-trained model lacks 

sufficient generalizability. Spatial validation revealed performance disparities across sub-regencies, suggesting that local 

data structures significantly influence model effectiveness. 

 Second, although class imbalance was addressed using SMOTE and Bagging techniques, the selection of 

hyperparameters (e.g., number of neighbors, sampling ratios) was based on empirical tuning rather than automated 

optimization, which may affect reproducibility. Additionally, the study did not incorporate temporal data or longitudinal 

tracking, which could enhance predictive accuracy and support early intervention strategies. 

 Lastly, while the F1 score was prioritized to mitigate bias from imbalanced data, other fairness metrics—such as 

precision-recall trade-offs across subgroups—were not explored. Future work should consider fairness-aware modeling 

to ensure equitable health predictions across diverse populations. 

4. Conclusion 

This study confirms that addressing class imbalance significantly enhances the predictive performance of machine 

learning models in nutritional classification tasks. XGBoost emerged as the most reliable algorithm, consistently 

achieving the highest accuracy and F1 scores across all indicators—wasting, underweight, and stunting. Neural Networks 

also demonstrated strong performance, particularly for WAZ and HAZ predictions when combined with Bagging 

techniques. 

 The integration of SMOTE and ensemble methods notably improved minority class detection, underscoring the 

importance of using the F1 score as a primary evaluation metric under imbalanced data conditions. Spatial validation 

revealed regional performance disparities, suggesting that adaptive modeling strategies—such as localized fine-tuning—

may be necessary to ensure equitable prediction outcomes. 

 Overall, the proposed framework offers a scalable, data-driven approach to nutritional surveillance, supporting more 

targeted public health interventions in resource-limited settings. Future research should incorporate longitudinal data and 

fairness-aware modeling to enhance generalizability, precision, and policy relevance. This framework lays the foundation 

for integrating predictive analytics into national nutritional surveillance systems, enabling proactive and equitable health 

interventions. 
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Appendix A:  

This appendix provides supplementary tables and figures that support the findings presented in the main text. Table A1 

shows the detailed performance metrics for each machine learning model tested, while Figure A1 illustrates the class 

distribution before and after the balancing techniques were applied. These additional materials are intended to give 

readers deeper insight into the experimental results. 
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