

JOURNAL OF TECHNOLOGY AND HUMANITIES VOL. 2 NO. 2 (2021) 10–16

© Sungai Siput Community College, Ministry of Higher Education, Malaysia

JTH

https://jthkkss.com/
e-ISSN 2805-4431

 DOI: https://doi.org/10.53797/jthkkss.v2i2.2.2021

*Corresponding author: aslina@fskik.upsi.edu.my
https://jthkkss.com/ All right reserved.

Abstract: Requirement elicitation is a part of the application development process, which determines the functional

and non-functional requirements of the application. This study has elicited the requirements of a programming

learning application by using several requirement elicitation techniques. The purpose of the application is to assist

novice programmers in learning C language programming. The requirement elicitation was done by using

qualitative approaches in a triangulation strategy. The triangulation involved literature reviews on related existing

programming applications and semi-structured interviews with five expert programming lecturers at Malaysian

Polytechnic. The requirement elicitation has identified an important approach of a C-programming learning

application: the programming visualization to help novices understand the program execution behaviour better. It

has been determined that the application should visualize the variable contents and program execution steps as its

functional requirements. Meanwhile, the application's non-functional requirement is that it should be designed to be

a simple IDE-based application since it is targeting the novices. The finding from this requirement elicitation is

essential in determining important functions to be available in the developed application and how it is supposed to

be implemented. This application could enhance the students' programming skills and prepare them to be competent

programmers for future industrial demands.

Keywords: Requirement elicitation, programming visualization, C programming

eRequirement Elicitation Techniques for a C-Programming

Learning Application

Mohd Noor, Nor Farahwahida & Saad, Aslina1*

1Sultan Idris Education University, 35900 Tanjong Malim, Perak, MALAYSIA

*Corresponding author email: aslina@fskik.upsi.edu.my

Available online 27 October 2021

1. Introduction

Industrial Revolution 4.0 (IR4.0) has significantly impacted computing and software technology. It has significantly

increased the demand for expert programmers (Kamaruzaman et al., 2019). Therefore, there is a need to produce

computer science and engineering graduates with good programming skills (Chaka, 2020). However, learning

programming is challenging for beginners (Cheah, 2020; Demilie, 2019). Many students claim it is difficult to

understand the concept of programming and its execution behaviour (Islam et al., 2019; Qian & Lehman, 2019).

Programming needs competency in a specific programming language. However, the students, being novice

programmers, are facing challenges to develop a program in syntactic, semantic and pragmatic aspects. These are

reflected in their disfluency of writing in the language syntax, which results in unresolved syntax errors (Ettles et al.,

2018).

They also need help understanding the program's behaviour due to their inability to visualize how it works

(Hashim et al., 2017). This results in poor programming skills among novices. Furthermore, using a professional

Integrated Development Environment (IDE), overwhelmed with complex functions, to demonstrate programming is

daunting for novices (Warner & Guo, 2017).

Many studies have been done to identify various approaches to tackle these issues. One of the approaches being

applied is programming visualization. Programming visualization is a method to show a computer program's internal

structure and behaviour that cannot be physically visualized (Shin, 2018). In the research context, programming

visualization is the construction of visual images of the program. These visual images show the current state of program

execution steps and the result of the program execution on variables. The result of the program execution can be shown

by using graphical representations that show the contents of the variables. This means that programming visualization

is envisioning the memory contents related to the program.

https://jthkkss.com/
https://doi.org/10.53797/jthkkss.v2i2.2.202
https://jthkkss.com/

Mohd Noor & Saad., Journal of Technology and Humanities Vol. 2 No. 2 (2021) p. 10–16

11

There have been several existing programming visualization applications being developed for programming

learning. However, they mostly target other programming languages, but comparatively few are in the C-language

(Egan & Mcdonald, 2020). Therefore, this research will focus on enhancing programming learning in the C-language

among the novices. Realizing the benefits of programming visualization for the novices, a programming learning

application that employs programming visualization in the C-language should be developed.

To develop this application, the first process that should be instigated is the requirement elicitation of the

application (Salve et al., 2018). The requirement elicitation is a preparation phase process where the users' needs are

determined (Ramdhani et al., 2018). The requirement elicitation process can be done using several methods rather than

only applying a single method. The combination of several requirement elicitation methods is known as the

triangulation strategy (Williamson, 2018). Triangulation helps develop high-quality requirements as each technique

will complement each other to support the multidimensionality of the requirements investigations (Saad & Dawson,

2018).

This paper aims to elicit the application requirements and acquire knowledge of the approaches in helping novices

in learning programming, to develop a C-programming learning application. The application will employ the

programming visualization concept. The application could help students understand programming better by visualizing

the variables' contents within the program memory and program execution steps using a simple graphical presentation.

2. Methodology

The requirement elicitation process used qualitative approaches with a triangulation strategy. Qualitative approaches

help the researcher to get a detailed description and intensive analysis of the related issues in this research (Schoch,

2020). The approaches implemented in this research were a literature review and semi-structured interviews. The

requirement elicitation was carried out in two phases: Phase 1 (One) is the literature review and Phase 2 (Two) involves

semi-structured interviews with the expert programming lecturer.

2.1 Phase 1: Literature Review

A literature review was carried out to investigate the programming visualization approaches employed in programming

learning. This method was chosen as it allows researchers to further analyze primary research findings to provide new

interpretations and summarized knowledge of a specific topic (Lubbe et al., 2020). All existing programming

visualization applications available in the C language were identified in this method. These applications were analyzed

and compared. The features and qualities of these applications were then recorded. Among the features being recorded

were the application platforms, design approach, compiler availability, ability to visualize variable contents, execution

steps, extra supporting features, and the main drawbacks of each. The analysis of these applications was compiled and

used during the semi-structured interview sessions.

2.2 Phase 2: Semi-structured Interview

The semi-structured interview was conducted to support and clarify the literature review finding, thus contributing to

the application requirement elicitation. This method was applied to explore subjective opinions based on the

respondents' experiences (Evans & Lewis, 2018). The interview was carried out among programming lecturers in the

Malaysian Polytechnic. Five expert programming lecturers were identified for the semi-structured interview sessions.

They were chosen for having qualifications in the subject area with more than 10 years of teaching experience (Wolff et

al., 2021). With that teaching experience, they possess the criteria of an expert lecturer for being involved in developing

teaching materials and assessments and addressing different types of learners (Reyes & Torio, 2021). Besides, they also

have experience using different types of IDEs and programming applications in teaching programming.

The semi-structured interviews were done with basic guidelines for defining the application requirements. These

guidelines helped the researcher focus on helping students learn to program using visualization. The following three

topic themes were the guidelines of the interview sessions: 1) the students' difficulties in writing C-programs; and 2)

what features of programming visualization should be developed; and 3) how should the programming visualization

application be applied.

The first was the ice-breaking theme to introduce the research subject matter to the respondents. It also helped the

researcher to understand the current situation in programming learning. The second and third themes were to elicit the

functional and non-functional requirements, respectively.

The researcher used the teach-back technique to support the second and third topics in the interview sessions.

Using this technique, the compilation of several programming visualization applications was shown to the expert

lecturers. This technique helped the researcher clarify the suitable approaches based on the existing applications

(Roslan et al., 2021). During the interview sessions, the researcher sought their feedback on the suggested approaches

from the applications that have been reviewed. Besides, other relevant inputs from the lecturers were also expected to

get better approaches to help their students learn to program better.

Mohd Noor & Saad., Journal of Technology and Humanities Vol. 2 No. 2 (2021) p. 10–16

12

3. Results

The requirement elicitation techniques have brought some important findings. These findings led to the elicitation of

the programming learning application's functional and non-functional requirements. The application's functional

requirement is very important as it determines what to be designed and developed. Meanwhile, the non-functional

requirement determines how the application should be designed and developed.

3.1 Literature Review Results

The literature review has discovered six related programming visualization applications available in the C-language.

These applications are the Python Tutor (PT), SeeC (SC), PlayVisualizerC (PVC), Visual Interpreter (VIP), Flash and

Scratch. These applications are analyzed and summarized as shown in Table 1. Based on Table 1, the analysis was

made mainly by comparing the application design approach and the drawbacks of each application, which could be

improved in this study.

Table 1: Analysis of programming visualization applications

 Applications

Features

aspect

PT SC PVC VIP Flash Scratch

Platform Web-based Standalone Web-based Web-based

&

standalone

Web-based Web-based

&

standalone

Design approach IDE IDE IDE IDE Animation IDE

Compiler GCC Clang Not available CUP &

JFlex

Not

available

Yes

Visualize

variable content

Yes Yes Yes Yes Yes Not

available

Visualize

execution steps

Yes Yes Yes Yes Yes Not

available

Supporting

features

Supports

other

programming

languages

Support run-

time error

detection

Can visualize

the

relationship of

variables to

memory

Includes

expression

evaluation

No need to

develop a

program

Drag-and-

drop

block-

coding

Drawbacks Does not

support

standard

input/output

in C

Difficult set-

up

environment,

cannot modify

source code

It does not

compile; thus,

no error

message is

produced

Needs a

webserver to

run the

application’s

profiler

Cannot

demonstrate

their own

program

No syntax

learning

3.2 Semi-structured Interview Result

The teach-back technique has clarified the needs of the application to be developed. Through the semi-structured

interview, the researcher managed to acquire the main elements to be visualized in the application, which are the

functional requirements of the application.

Table 2 summarizes the semi-structured interview finding among the expert programming lecturers. Based on the

interview theme, the respondents have identified eight requirements of the application (F1-F8) based on programming

visualization. These requirements have been suggested and supported by at least four out of five respondents. These

respondents are those five lecturers R1, R2, R3, R4 and R5 denote. The table shows the respondents' agreement with

the suggested functions and features of the proposed application, denoted by the check (√) symbol. Meanwhile, the

cross (X) symbol denotes that the respondent thinks the proposed function or feature is not crucial.

Table 2: Analysis of semi-structured interviews among expert lecturers

No The features of visualization that need to

be present

R1 R2 R3 R4 R5

F1 Highlight changes in variable content on

each line of program implementation

√ √ √ √ √

F2 The variables’ contents must be updated at

every single instruction execution

√ Ⅹ √ √ √

F3 Should have a graphical representation of √ √ √ √ √

Mohd Noor & Saad., Journal of Technology and Humanities Vol. 2 No. 2 (2021) p. 10–16

13

No The features of visualization that need to

be present

R1 R2 R3 R4 R5

the variables’ contents

F4 Should show the program execution steps √ √ √ √ √

F5 The application points out the current

command line being executed, as well as

the previously executed command line

√ √ √ √ Ⅹ

F6 The application should be developed as an

IDE-based application to allow students to

demonstrate their own program

√ √ Ⅹ √ √

F7 The application should be implemented as

a standalone application rather than as a

web-based application

Ⅹ √ √ √ √

F8 The application must be presented as

simple as possible by using graphical

illustrations

√ √ √ √ √

4. Discussion

Application design approach as shown in Table 1, from these six applications, Scratch IDE is an attractive application

for novices that implements visual programming. However, this approach is not suitable to be applied for the learning

of C-language syntax (Bakar et al., 2019). The visual programming approach applied in Scratch does not support the

transition to text-based programming since it emphasizes building programs using block-based programming (Sim &

Lau, 2018). However, its drag-and-drop block-coding feature is helpful to assist novices in programming which could

be implemented for future research.

Meanwhile, the Flash application was another unique approach that implemented animation rather than an IDE

approach. Being an animation application, it does not function as an IDE. By only observing the animation of the

programming execution process, students need to be more engaging in active learning. Students should be learning

programming by the learning-by-doing concept through IDE, which could enhance active learning (Gallego-Romero et

al., 2020). Moreover, using an animation-based application in programming learning is unsuitable because it does not

allow the students to demonstrate their program within the application.

On the other hand, the PT, SC, PVC and VIP are found to be IDE-based applications. Compilers support PT, SC,

and VIP, while the PVC uses an interpreter for program interpretation. Therefore, these applications allow students to

actively demonstrate their program and acquire programming experience. However, some drawbacks in these

applications open up room for improvement that is attempted in this study.

Furthermore, the drawbacks of the existing applications, although PT, SC, PVC and VIP are very much

supporting programming learning, there are some drawbacks of these applications. As has been documented by the web

administrator, the PT does not support the input-output in the C language. Specifically, it does not support using the

scanf () function, the basic function often used by students to give input to the program. It is an essential feature of the

C language in the course syllabus (Department of Polytechnic and Community College Education, 2019). This

limitation has made this application less usable for C language fundamentals learning.

Meanwhile, although the SC supports the C language input-output, the SC is difficult to install because it needs a

compiler setup before the application installation. This complex installation process could increase the extraneous

cognitive load for the novices. Moreover, a program source code cannot be modified within the SC environment,

complicating the learning process.

Reviewing the next application, it was found that the PVC application has no compiler. Therefore, it cannot

compile a program made by the student and produce an error message if there is any. This has been a major drawback

of the application because the ability of the application to compile a C program is a benefit in learning to program.

Most of the applications were built to be web-based applications. However, this will cause a significant

dependency on internet connection. This will imply bandwidth cost and performance issues for its dependencies on

internet connectivity and speed. This matter should be considered, which could affect the students' readiness (Azhar &

Rani, 2020).

Although the SC and VIP applications are available in the standalone version, several drawbacks make these

applications not applicable to novices. Although VIP is available as both web-based and standalone versions, the

standalone version still needs a webserver to run the application's profiler. Meanwhile, the SC application has a

complex environment before users can use it. The SC is dependent on the Clang compiler, which complicates

installation and offline environment setup (Ishizue et al., 2020). The advantages and disadvantages of the application

that has been reviewed were referenced during the interview with the expert programming lecturers.

Meanwhile, based on the data in Table 2, all the expert programming lecturers agreed with F1 that programming

visualization should highlight variable content changes on each program implementation line. They also agreed with F2

that the variables' contents must be updated at every instruction execution. Therefore, they suggested F3 that the

Table 2: Analysis of semi-structured interviews among expert lectures (Continued)

Mohd Noor & Saad., Journal of Technology and Humanities Vol. 2 No. 2 (2021) p. 10–16

14

application should have a graphical representation of the variables' contents. Apart from that, the respondents suggested

F4 that the application show the program execution steps. Additionally, they suggested F5 that the application point out

the current command line being executed and the previously executed command line. This would help the students to

analyze how the program is executed. These five requirements (F1-F5) have been identified as the application's

functional requirements.

The interview also clarified F6 that the application should be developed as an IDE-based application. This is to

allow students to demonstrate their program. Therefore, the application should be supported by a suitable compiler.

Based on the respondents' responses on F7, the application is preferred to be implemented as a standalone rather than a

web-based application. A standalone application will allow students to use the application without needing an internet

connection (Dumbiri & Nwadiani, 2020). The lecturers also suggested F8 that the application be presented as simply as

possible using graphical illustrations. These three later requirements (F6-F8) have been identified as the non-functional

requirements of the application.

5. Conclusion

The study was carried out to elicit a programming learning application development requirement. The learning

application targets the C language. Using the triangulation strategy during the requirement elicitation has resulted in

strong and mutually supportive findings. The expert lecturers agree that programming visualization is the best approach

to be applied in the application. It will be visualizing two main elements: the variable contents and the program

execution steps. It should be graphically presented in a simple IDE-based environment to make programming look easy

for the novices. For future studies, since visual programming has become an interesting approach for beginners, a

visual programming approach can assist in programming at a higher education level. Text-based programming can be

adapted to block-based programming through frame-based programming. Whatever the approach, syntax learning

should not be at stake because syntax is the foundation of programming and remains an industry practice.

Acknowledgement

The authors want to acknowledge the Ministry of Higher Education's scholarship support in conducting this research.

Sultan Idris Education University, Tanjung Malim, Perak, Malaysia, support this research. The authors would like to

express appreciation to Sultan Idris Education University for the valuable comments and other bits of help. The authors

also would like to express appreciation to the Head of the Electrical Engineering Department, the Head of the Program,

Diploma in Electronic (Computer) Engineering and all programming lecturers in Polytechnic Sultan Azlan Shah,

Behrang Perak and other Malaysian Polytechnics who have supported and involved in this research.

References

Azhar, N., & Rani, N. C. A. (2020). Student Readiness Towards E-Learning Adoption in Higher Education: A

Conceptual Model Based on Extended Technology Acceptance Model. Journal on Technical and Vocational

Education, 5(2), 61-74. Scribbr. http://upikpolimas.edu.my/ojs/index.php/JTVE/article/view/382

Bakar, M. A., Mukhtar, M., & Khalid, F. (2019). The development of a visual output approach for programming via the

application of cognitive load theory and constructivism. International Journal of Advanced Computer Science and

Applications, 10(11), 305-312. https://doi.org/10.14569/IJACSA.2019.0101142

Chaka, C. (2020). Skills, competencies and literacies attributed to 4IR/Industry 4.0: Scoping review. IFLA

Journal, 46(4), 369-399. https://doi.org/10.1177/0340035219896376

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer programming: A

literature review. Contemporary Educational Technology, 12(2), 1-14. https://doi.org/10.30935/cedtech/8247

Demilie, W. B. (2019). Causes of failure of university students in computer programming courses: The case of

Wachemo University. International Journal of Scientific Research in Computer Science, Engineering and Information

Technology, 5(5), 123-132. https://doi.org/10.32628/cseit195516

Department of Polytechnic and Community College Education. (2019). Course Information DEC20012 Programming

Fundamentals.

Dumbiri, D. N., & Nwadiani, C. O. (2020). Challenges Facing Application of E-learning Facilities in Vocational and

Technical Education Program in South Nigeria Universities. Asian Journal of Vocational Education and

Humanities, 1(2), 1-8. https://doi.org/10.53797/ajvah.v1i2.1.2020

Egan, M. H, & McDonald, C. (2021). An evaluation of SeeC: a tool designed to assist novice C programmers with

program understanding and debugging. Computer Science Education, 31(3), 340-373.

https://doi.org/10.1080/08993408.2020.1777034

https://doi.org/10.14569/IJACSA.2019.0101142
https://doi.org/10.1177/0340035219896376
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.32628/cseit195516
https://doi.org/10.53797/ajvah.v1i2.1.2020
https://doi.org/10.1080/08993408.2020.1777034

Mohd Noor & Saad., Journal of Technology and Humanities Vol. 2 No. 2 (2021) p. 10–16

15

Ettles, A., Luxton-Reilly, A., & Denny, P. (2018, January). Common logic errors made by novice programmers.

In Proceedings of the 20th Australasian Computing Education Conference (pp. 83-89).

https://doi.org/10.1145/3160489.3160493

Evans, C., & Lewis, J. (2018). Analysing semi-structured interviews using thematic analysis: Exploring voluntary civic

participation among adults. London. SAGE Publication Limited.

Gallego-Romero, J. M., Alario-Hoyos, C., Estévez-Ayres, I., & Delgado Kloos, C. (2020). Analyzing learners’

engagement and behavior in MOOCs on programming with the Codeboard IDE. Educational Technology Research and

Development, 68, 2505-2528. https://doi.org/10.1007/s11423-020-09773-6

Hashim, A. S., Ahmad, R., & Amar, M. S. S. (2017). Difficulties in Learning Structured Programming: A Case Study

in UTP. In 2017 7th World Engineering Education Forum (WEEF), 210-215. IEEE.

https://doi.org/10.1109/WEEF.2017.8467151

Ishizue, R., Sakamoto, K., Washizaki, H., & Fukazawa, Y. (2020). PVC. js: Visualizing C programs on web browsers

for novices. Heliyon, 6(4), 1-15. https://doi.org/10.1016/j.heliyon.2020.e03806

Islam, N., Shafi Sheikh, G., Fatima, R., & Alvi, F. (2019). A study of difficulties of students in learning

programming. Journal of Education & Social Sciences, 7(2), 38-46. https://doi.org/10.20547/jess0721907203

Kamaruzaman, F. M., Hamid, R., Mutalib, A. A., & Rasul, M. S. (2019). Conceptual framework for the development of

4IR skills for engineering graduates. Global Journal of Engineering Education, 21(1), 54-61.

Lubbe, W., ten Ham-Baloyi, W., & Smit, K. (2020). The integrative literature review as a research method: A

demonstration review of research on neurodevelopmental supportive care in preterm infants. Journal of Neonatal

Nursing, 26(6), 308-315. https://doi.org/10.1016/j.jnn.2020.04.006

Qian, Y., & Lehman, J. D. (2019). Using targeted feedback to address common student misconceptions in introductory

programming: A data-driven approach. SAGE Open, 9(4), 1-12. https://doi.org/10.1177/2158244019885136

Ramdhani, M. A., Maylawati, D. S. A., Amin, A. S., & Aulawi, H. (2018). Requirements elicitation in software

engineering. International Journal of Engineering & Technology, 7(2.19), 772-775. Scribbr.

https://etheses.uinsgd.ac.id/10580/

Delos Reyes, R. D. G., & Torio, V. A. G. (2021). The relationship of expert teacher–learner rapport and learner

autonomy in the CVIF-dynamic learning program. The Asia-Pacific Education Researcher, 30(5), 471-481.

https://doi.org/10.1007/s40299-020-00532-y

Roslan, R., Ayub, A. F. M., Ghazali, N., & Zulkifli, N. N. (2021). The development of a collaborated gamified e-quiz

and strategy game mobile application to increase students’ motivation and continuance usage intention. ANP Journal of

Social Science and Humanities, 2(2), 74-81. https://doi.org/10.53797/anp.jssh.v2i2.10.2021

Saad, A., & Dawson, C. (2018). Requirement elicitation techniques for an improved case based lesson planning

system. Journal of Systems and Information Technology, 20(1), 19-32. https://doi.org/10.1108/JSIT-12-2016-0080

Salve, S. M., Samreen, S. N., & Khatri-Valmik, N. (2018). A Comparative Study on Software Development Life Cycle

Models. International Research Journal of Engineering and Technology, 5(2), 696-700. Scribbr.

https://www.irjet.net/archives/V5/i2/IRJET-V5I2154.pdf

Schoch, K. (2020). Case study research. Research design and methods: An applied guide for the scholar-practitioner,

245-258.

Shin, W. (2018). A Study on the Effects of Visualization Tools on Debugging Program and Extending

Functionality. International Journal of Advanced Science and Technology, 115, 149-160.

https://doi.org/http://dx.doi.org/10.14257/ijast.2018.115.14

Sim, T. Y., & Lau, S. L. (2018, November). Online tools to support novice programming: A systematic review. In 2018

IEEE Conference on e-Learning, e-Management and e-Services (IC3e), 91-96. IEEE.

https://doi.org/10.1109/IC3e.2018.8632649

Warner, J., & Guo, P. J. (2017, May). Codepilot: Scaffolding end-to-end collaborative software development for novice

programmers. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 1136-1141).

https://doi.org/10.1145/3025453.3025876

Williamson, K. (2018). Chapter 13: Ethnographic research. Research Methods (2nd Ed.), Information, Systems, and

Contexts, 311-335. https://doi.org/10.1016/B978-0-08-102220-7.00013-3

Wolff, C. E., Jarodzka, H., & Boshuizen, H. P. (2021). Classroom management scripts: A theoretical model contrasting

https://doi.org/10.1145/3160489.3160493
https://doi.org/10.1007/s11423-020-09773-6
https://doi.org/10.1109/WEEF.2017.8467151
https://doi.org/10.1016/j.heliyon.2020.e03806
https://doi.org/10.20547/jess0721907203
https://doi.org/10.1016/j.jnn.2020.04.006
https://doi.org/10.1177/2158244019885136
https://etheses.uinsgd.ac.id/10580/
https://doi.org/10.1007/s40299-020-00532-y
https://doi.org/10.53797/anp.jssh.v2i2.10.2021
https://doi.org/10.1108/JSIT-12-2016-0080
https://doi.org/http:/dx.doi.org/10.14257/ijast.2018.115.14
https://doi.org/10.1109/IC3e.2018.8632649
https://doi.org/10.1145/3025453.3025876
https://doi.org/10.1016/B978-0-08-102220-7.00013-3

Mohd Noor & Saad., Journal of Technology and Humanities Vol. 2 No. 2 (2021) p. 10–16

16

expert and novice teachers’ knowledge and awareness of classroom events. Educational Psychology Review, 33, 131-

148. https://doi.org/10.1007/s10648-020-09542-0

https://doi.org/10.1007/s10648-020-09542-0

