Enhancing Nutritional Predictive Models: Addressing Class Imbalance with Machine Learning

Authors

  • Liliana Swastina Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, MALAYSIA
  • Bahbibi Rahmatullah Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, MALAYSIA
  • Bambang Lareno Calvin Institute of Technology, Jakarta, INDONESIA
  • Asmara Alias Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, MALAYSIA
  • Achmad Hidayanto Faculty of Computer Science, University of Indonesia, West Java, Depok, INDONESIA
  • M Khairudin Faculty of Engineering, Universitas Negeri Yogyakarta, Yogyakarta, INDONESIA

DOI:

https://doi.org/10.53797/jthkks.v6i1.3a.2025

Keywords:

Nutritional Status, Predictive model, Class imbalance, Machine learning

Abstract

Malnutrition remains a critical public health concern, particularly in low-resource settings where early detection is essential yet often constrained by limited infrastructure. While machine learning (ML) has emerged as a promising tool for nutritional risk prediction, many existing models fail to address class imbalance, resulting in biased outcomes and poor minority class detection. This study introduces an optimized ML framework that integrates imbalance-handling techniques—specifically SMOTE and Bagging—into the classification of stunting, wasting, and underweight among children in Banjarmasin, Indonesia. A curated dataset from 26 community health centers was used to train and evaluate five algorithms (Neural Network, Random Forest, Decision Tree, Logistic Regression, and XGBoost) across three treatment phases. Performance was assessed using 10-fold cross-validation and multi-method statistical validation, including ANOVA, Kruskal-Wallis, Dunn’s, and Friedman tests. XGBoost consistently outperformed other models, achieving the highest accuracy (90.7%) and F1 scores across all indicators. The integration of oversampling and ensemble methods yielded substantial improvements in minority class detection, with F1 score gains ranging from 1.15% to 419.42%. Spatial validation revealed regional disparities, underscoring the need for adaptive modeling strategies. These findings contribute to the development of scalable, equitable, and context-aware nutritional surveillance systems, offering actionable insights for targeted interventions and public health policy.

Downloads

Download data is not yet available.

References

Alqahtani, A., Albuainin, F., Alrayes, R., Al Muhanna, N., Alyahyan, E., & Aldahasi, E. (2021). Obesity Level Prediction Based on Data Mining Techniques. IJCSNS International Journal of Computer Science and Network Security, 21(3), 103.

Bansod, J., Amonkar, M., Naik, A., Vaz, T., Sanke, M., & Aswale, S. (2020). Prediction of Child Development using Data Mining Approach. International Journal of Computer Applications, 177(44), 13–17. https://doi.org/10.5120/ijca2020919955

Bitew, F. H., Sparks, C. S., & Nyarko, S. H. (2022). Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia. Public Health Nutrition, 25(2), 269–280. https://doi.org/10.1017/S1368980021004262

Breiman, L. (2001). Random forests. Machine Learning. Kluwer Academic Publishers. Manufactured in The Netherlands., 45(1), 5–32.

Dinkes Banjarmasin. (2024). Profil Kesehatan Kota Banjarmasin Tahun 2023. Dinas Kesehatan Banjarmasin.

Dinkes Kalsel. (2023). Profil Kesehatan Provinsi Kalimantan Selatan 2022.

Fazraningtyas, W. A., Rahmatullah, B., Salmarini, D. D., Ariffin, S. A., & Ismail, A. (2024). Recent advancements in postpartum depression prediction through machine learning approaches: A systematic review. Bulletin of Electrical Engineering and Informatics, 13(4), 2729–2737. https://doi.org/10.11591/eei.v13i4.7185

Fenta, H. M., Zewotir, T., & Muluneh, E. K. (2021). A machine learning classifier approach for identifying the determinants of under-five child undernutrition in Ethiopian administrative zones. BMC Medical Informatics and Decision Making, 21(1), 1–12. https://doi.org/10.1186/s12911-021-01652-1

Ferdowsy, F., Rahi, K. S. A., Jabiullah, M. I., & Habib, M. T. (2021). A machine learning approach for obesity risk prediction. Current Research in Behavioral Sciences, 2(August), 100053. https://doi.org/10.1016/j.crbeha.2021.100053

Fernández, A., García, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. In Journal of Artificial Intelligence Research (Vol. 61). https://doi.org/10.1613/jair.1.11192

Hammond, R., Athanasiadou, R., Curado, S., Aphinyanaphongs, Y., Abrams, C., Messito, M. J., Gross, R., Katzow, M., Jay, M., Razavian, N., & Elbel, B. (2019). Predicting childhood obesity using electronic health records and publicly available data. PLoS ONE, 14(4). https://doi.org/10.1371/journal.pone.0215571

Hemo, S. A., & Rayhan, M. I. (2021). Classification tree and random forest model to predict under-five malnutrition in Bangladesh. Biom Biostat Int J, 10(3), 116–123. https://doi.org/10.15406/bbij.2021.10.00337

Khan, J. R., Hossain, M. B., & Awan, N. (2022). Community-level environmental characteristics predictive of childhood stunting in Bangladesh - a study based on the repeated cross-sectional surveys. International Journal of Environmental Health Research, 32(3), 473–486. https://doi.org/10.1080/09603123.2020.1777947

Lareno, B., Swastina, L., & Tan, F. (2020). The Mapping of Malnutrition and Stunting Through Web-Based Support System. Asia Pacific Institute of Advanced Research (APJCECT), 6(2), 30–39.

Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124–136. https://doi.org/10.1016/J.EJOR.2015.05.030

Momand, Z., Mongkolnam, P., Kositpanthavong, P., & Chan, J. H. (2020). Data Mining Based Prediction of Malnutrition in Afghan Children. KST 2020 - 2020 12th International Conference on Knowledge and Smart Technology, 12–17. https://doi.org/10.1109/KST48564.2020.9059388

National Institute of Population Research and Training (NIPORT). (2016). Bangladesh Demographic and Health survey 2014. In Dhaka, Bangladesh, and Rockville, Maryland, USA.

Pang, X., Forrest, C. B., Lê-Scherban, F., & Masino, A. J. (2021). Prediction of early childhood obesity with machine learning and electronic health record data. International Journal of Medical Informatics, 150(April). https://doi.org/10.1016/j.ijmedinf.2021.104454

Rahman, S. M. J., Ahmed, N. A. M. F., Abedin, M. M., Ahammed, B., Ali, M., Rahman, M. J., & Maniruzzaman, M. (2021). Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach. PLoS ONE, 16(6 June 2021), 1–11. https://doi.org/10.1371/journal.pone.0253172

Rahmatullah, B., & Noble, J. A. (2014). Anatomical object detection in fetal ultrasound: Computer-expert agreements. In Communications in Computer and Information Science (pp. 207–218). Springer. https://doi.org/10.1007/978-3-642-54121-6_18

Ridwan, A., & Sari, T. N. (2021). The comparison of accuracy between naïve bayes classifier and c4.5 algorithm in classifying toddler nutrition status based on anthropometry index. Journal of Physics: Conference Series, 1764(1), 1–6. https://doi.org/10.1088/1742-6596/1764/1/012047

Setjen Kementerian Kesehatan RI. (2021). Profil Kesehatan Indonesia Tahun 2020.

Shahriar, M. M., Iqubal, M. S., Mitra, S., & ... (2019). A Deep Learning Approach to Predict Malnutrition Status of 0-59 Month’s Older Children in Bangladesh. … 4.0, Artificial Intelligence …. https://ieeexplore.ieee.org/abstract/document/8784823/

Sinambela, D., Rahmatullah, B., Lah, N. H. C., & Selama, A. W. (2024). Machine learning approaches for predicting postpartum hemorrhage: A comprehensive systematic literature review. Indonesian Journal of Electrical Engineering and Computer Science, 34(3), 2087–2095. https://doi.org/10.11591/ijeecs.v34.i3.pp2087-2095

Swastina, L., Rahmatullah, B., Saad, A., & Khan, H. (2024). A systematic review on research trends, datasets, algorithms, and frameworks of children’s nutritional status prediction. IAES International Journal of Artificial Intelligence, 13(2), 1866–1875. https://doi.org/10.11591/ijai.v13.i2.pp1868-1877

Swastina, L., & Riadi, A. S. (2020). Implementation of Feeder System to Support Monitoring the Potential Malnutrition. International Journal of Education, Science, Technology, and Engineering, 3(2), 48–59.

Talukder, A., & Ahammed, B. (2020). Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition, 78, 110861. https://doi.org/10.1016/J.NUT.2020.110861

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques. In Data Mining: Practical Machine Learning Tools and Techniques.

Yuliansyah, H., Winiarti, S., Arfiani, I., & Sari, N. (2020). Comparison and Analysis of Classification Algorithm Performance for Nutritional Status Data. International Journal of Computer Applications, 176(20), 14–20. https://doi.org/10.5120/ijca2020920157

Zhang, B., Rahmatullah, B., Wang, S. L., Zaidan, A. A., Zaidan, B. B., & Liu, P. (2023). A review of research on medical image confidentiality related technology: Coherent taxonomy, motivations, open challenges and recommendations. Multimedia Tools and Applications, 82, 21867–21906. https://doi.org/10.1007/s11042-020-09629-4

Downloads

Published

2025-06-30

How to Cite

Swastina, L., Rahmatullah, B., Lareno, B., Alias, A., Hidayanto, A., & M Khairudin. (2025). Enhancing Nutritional Predictive Models: Addressing Class Imbalance with Machine Learning. Journal of Technology and Humanities, 6(1), 22-32. https://doi.org/10.53797/jthkks.v6i1.3a.2025